Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Les sujets
Type de document
Gamme d'année
1.
Cmc-Computers Materials & Continua ; 75(3):4767-4783, 2023.
Article Dans Anglais | Web of Science | ID: covidwho-20240061

Résumé

Applied linguistics is an interdisciplinary domain which identifies, investigates, and offers solutions to language-related real-life problems. The new coronavirus disease, otherwise known as Coronavirus disease (COVID-19), has severely affected the everyday life of people all over the world. Specifically, since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection, the country has initiated the appropriate preventive measures (like lockdown, physical separation, and masking) for combating this extremely transmittable disease. So, individuals spent more time on online social media platforms (i.e., Twitter, Facebook, Instagram, LinkedIn, and Reddit) and expressed their thoughts and feelings about coronavirus infection. Twitter has become one of the popular social media platforms and allows anyone to post tweets. This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based senti-ment analysis (SCOBGRU-SA) on COVID-19 tweets. The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic. The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this. Moreover, the BGRU model is utilized to recognise and classify sen-timents present in the tweets. Furthermore, the SCO algorithm is exploited for tuning the BGRU method's hyperparameter, which helps attain improved classification performance. The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset, and the results signify its promising performance compared to other DL models.

2.
Computers, Materials and Continua ; 75(2):4255-4272, 2023.
Article Dans Anglais | Scopus | ID: covidwho-2312440

Résumé

Nowadays, the usage of social media platforms is rapidly increasing, and rumours or false information are also rising, especially among Arab nations. This false information is harmful to society and individuals. Blocking and detecting the spread of fake news in Arabic becomes critical. Several artificial intelligence (AI) methods, including contemporary transformer techniques, BERT, were used to detect fake news. Thus, fake news in Arabic is identified by utilizing AI approaches. This article develops a new hunter-prey optimization with hybrid deep learning-based fake news detection (HPOHDL-FND) model on the Arabic corpus. The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format. Besides, the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network (LSTM-RNN) model for fake news detection and classification. Finally, hunter prey optimization (HPO) algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model. The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets. The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57% and 93.53% on Covid19Fakes and satirical datasets, respectively. © 2023 Tech Science Press. All rights reserved.

3.
Cmc-Computers Materials & Continua ; 73(2):3305-3318, 2022.
Article Dans Anglais | Web of Science | ID: covidwho-1929082

Résumé

Artificial Intelligence (AI) encompasses various domains such as Machine Learning (ML), Deep Learning (DL), and other cognitive technologies which have been widely applied in healthcare sector. AI models are utilized in healthcare sector in which the machines are used to investigate and make decisions based on prediction and classification of input data. With this motivation, the current study involves the design of Metaheuristic Optimization with Kernel Extreme Learning Machine for COVID19 Prediction Model on Epidemiology Dataset, named MOKELM-CPED technique. The primary aim of the presented MOKELM-CPED model is to accomplish effectual COVID-19 classification outcomes using epidemiology dataset. In the proposed MOKELM-CPED model, the data first undergoes pre-processing to transform the medical data into useful format. Followed by, data classification process is performed by following Kernel Extreme (SOS) optimization algorithm is utilized to fine tune the KELM parameters which consequently helps in achieving high detection efficiency. In order to investigate the improved classifier outcomes of MOKELM-CPED model in an effectual manner, a comprehensive experimental analysis was conducted and the results were inspected under diverse aspects. The outcome of the experiments infer the enhanced performance of the proposed method over recent approaches under distinct measures.

4.
Computers, Materials and Continua ; 71(2):6257-6273, 2022.
Article Dans Anglais | Scopus | ID: covidwho-1632022

Résumé

Novel coronavirus 2019 (COVID-19) has affected the people's health, their lifestyle and economical status across the globe. The application of advanced Artificial Intelligence (AI) methods in combination with radiological imaging is useful in accurate detection of the disease. It also assists the physicians to take care of remote villages too. The current research paper proposes a novel automated COVID-19 analysis method with the help of Optimal Hybrid Feature Extraction (OHFE) and Optimal Deep Neural Network (ODNN) called OHFE-ODNN from chest x-ray images. The objective of the presented technique is for performing binary and multi-class classification of COVID-19 analysis from chest X-ray image. The presented OHFE-ODNN method includes a sequence of procedures such as Median Filtering (MF)based pre-processed, feature extraction and finally, binary (COVID/Non-COVID) and multiclass (Normal, COVID, SARS) classification. Besides, in OHFE-based feature extraction, Gray Level Co-occurrence Matrix (GLCM) and Histogram of Gradients (HOG) are integrated together. The presented OHFE-ODNN model includes Squirrel Search Algorithm (SSA) for fine-tuning the parameters of DNN. The performance of the presented OHFE-ODNN technique is conducted using chest x-rays dataset. The presented OHFE-ODNN method classified the binary classes effectively with a maximum precision of 95.82%, accuracy of 94.01% and F-score of 96.61%. Besides, multiple classes were classified proficiently by OHFE-ODNN model with a precision of 95.63%, accuracy of 95.60% and an F-score of 95.73%. © 2022 Tech Science Press. All rights reserved.

SÉLECTION CITATIONS
Détails de la recherche